
SedonaDB Performance Benchmark 1

SedonaDB Performance Benchmark

Authors: Wherobots Inc.

Release Date: 10/24/2023

Table of Content

To better showcase SedonaDB's performance, we conducted a comprehensive performance benchmark on some
commonly seen spatial data processing tasks.

Settings
All the tests uses open datasets and were performed on Wherobots cloud. We setup 2 Wherobots clusters with
different configurations to run the benchmarks (Medium cluster and Large cluster respectively). The following table
shows the setups of our clusters. Running the benchmarks on clusters of different sizes allows us to evaluate the
scalability of SedonaDB.

Configuration Medium cluster Large cluster

Instance Type General purpose General purpose

Instance vCPUs 16 32

RAM 64 GB 128 GB

EBS Volume 500 GB 500 GB

EBS Throughput 125 MB/s 125 MB/s

Instances 10 executors + 1 driver 10 executors + 1 driver

AWS Region us-west-2 us-west-2

For some tasks whose performance were bounded by EBS throughput, we’ll run them on the clusters with same
configuration, except that the EBS throughput was raised to 500 MB/s. We’ll see how EBS throughput affects the
performance and scalability of shuffle-heavy workloads.

Wherobots Cloud runs all the clusters in AWS us-west-2 region, so all the EC2 instances and S3 buckets are in us-
west-2.

Table of Content

Settings

Geometry / Geography Data Processing

Datasets

Data Pre-processing

Spatial Queries

Data Update Transactions

Raster Data Benchmark

Datasets

Data Pre-processing

Raster Data Queries

Data update Transactions

Appendix

SedonaDB Performance Benchmark 2

Geometry / Geography Data Processing

Datasets
We are using 2 datasets to benchmark the performance of SedonaDB:

OSM Nodes

This dataset contains all the nodes of the OpenStreetMap Planet dataset. This dataset is preprocessed to parquet files
containing WKB representation of nodes. All the geometries in this dataset are POINTs. There are roughly 8 billion
points in this dataset.

Overture Buildings

This dataset is the GeoParquet version of Overture Buildings provided by Wherobots, which are essentially parquet
files containing WKB representation of geometries. It contains 800 million geometries, which are POLYGONs and
MULTIPOLYGONs.

Postal Codes

OSM2015/postal_codes dataset contains boundaries of postal code areas as defined in OpenStreetMap. This dataset
is preprocessed to parquet files containing WKB representation of zones. This dataset is filtered to contain only
POLYGONs. There are 154,452 polygons in this dataset. This dataset is quite small and was only used in the spatial
join performance benchmarks.

We’ve split the OSM Nodes and Overture Buildings datasets into two non-disjoint parts: a larger part (90%) and a
smaller part (10%). The larger part is for running data preprocessing and spatial queries benchmarks. The smaller part
is for running the ACID transactions to insert or merge the smaller part into the Havasu table containing the larger part.

The overview of datasets used in this benchmark is shown in the follow table.

Dataset Size (Parquet files) Number of Rows Type of Geometries

OSM Nodes Large (90%) 256 GB 7,456,990,919 POINT

OSM Nodes Small (10%) 30 GB 828,501,977 POINT

Overture Buildings Large (90%) 103 GB 785,524,851 POLYGON and MULTIPOLYGON

Overture Buildings Small (10%) 12 GB 78,557,756 POLYGON and MULTIPOLYGON

Postal Codes 0.86 GB 154,452 POLYGON

Data Pre-processing
We’ll run 2 data pre-processing tasks to ingest the datasets into Havasu tables.

1. Migrate Data Files: Loading the parquet files directly into Havasu table without copying the data files. This is done
using the [migrate procedure](https://iceberg.apache.org/docs/latest/spark-procedures/#migrate) of Apache
Iceberg, which builds iceberg table’s metadata using existing parquet files (without scanning or copying all the data
in these parquet files). Please refer to the Wherobots documentation for detailed steps.

2. Create Spatial Index: Reorder the records in the Havasu table to sort by the hilbert index of geometries for raster
spatial queries. This requires sorting and rewriting the entire Havasu table and needs to run regularly when new
data were ingested into the tables.

Performance of Migrate Data Files

Medium cluster Large cluster

Loading OSM Nodes Large 33.129 s 33.704 s

https://planet.openstreetmap.org/
https://github.com/wherobots/OvertureMaps
https://star.cs.ucr.edu/?OSM2015/postal_codes#center=33.97733,-117.35846&zoom=14
https://iceberg.apache.org/docs/latest/spark-procedures/#migrate
https://docs.wherobots.services/1.2.0/references/havasu/geometry/migrating-parquet-files/#step-2-migrate-the-table

SedonaDB Performance Benchmark 3

Loading Overture Buildings Large 31.807 s 27.673 s

Loading Postal Codes 3.503 s 2.372 s

Data file migration is not a distributed task in Havasu. The metadata of parquet files were all collected by the driver
node. So we see constant time spent on this task, regardless of the size of the clusters.

Performance of Create Spatial Index

Medium cluster Large cluster

OSM Nodes Large 1195.108 s 642.982 s

Overture Buildings Large 446.820 s 381.735 s

Postal Codes 50.691 s 54.121 s

Creating spatial index is a distributed task requires shuffling. For OSM Nodes and Overture Buildings dataset the
performance scales with the size of the cluster. There is no performance improvement observed for creating spatial
index for Postal Codes dataset. This dataset is small enough to be handled by a medium-sized cluster so there’s no
point processing it on a larger cluster.

Spatial Queries
Spatial Transformation Queries

We’ve run several commonly seen spatial data transformation tasks on OSM Nodes and Overture Buildings dataset.
The data transformations were benchmarked on uncached Havasu tables as well as cached Havasu tables. To make
the table being fully cached in memory, we allocated 30 GB off-heap memory on each node and cached the tables
using OFF_HEAP storage level when running queries on cached tables.

The time spent running these tasks were shown in the table below.

Medium cluster Large cluster Medium cluster cached Large cluster cached

ST_AreaSpheroid - OSM Nodes 55.826 s 31.119 s 27.004 s 11.814 s

ST_LengthSpheroid - OSM Nodes 58.987 s 31.213 s 26.368 s 10.908 s

ST_Envelope_Aggr - OSM Nodes 71.953 s 36.846 s 41.514 s 16.729 s

ST_Transform - OSM Nodes 122.727 s 64.753 s 107.811 s 48.674 s

ST_Buffer - OSM Nodes 849.202 s 417.091 s 898.525 s 379.535 s

ST_Centroid - OSM Nodes 60.521 s 31.168 s 31.395 s 13.715 s

ST_AreaSpheroid - Overture Buildings 79.537 s 41.045 s 75.011 s 33.563 s

ST_LengthSpheroid - Overture Buildings 64.836 s 33.093 s 58.010 s 25.970 s

ST_Envelope_Aggr - Overture Buildings 17.889 s 10.186 s 8.580 s 4.025 s

ST_Transform - Overture Buildings 26.537 s 14.053 s 17.576 s 7.553 s

ST_Buffer - Overture Buildings 150.910 s 76.545 s 152.890 s 70.672 s

ST_Centroid - Overture Buildings 19.085 s 10.386 s 8.761 s 3.850 s

For simple spatial data transformations, SedonaDB shows almost linear scalability. Readers can estimate the time
spent for these data transformations tasks processing their own data in their own Wherobots cluster faithfully based on
these data. We’ve also found that caching the table accelerates IO-bounded queries such as ST_Envelope_Aggr and
ST_Centroid significantly. For CPU-bounded queries such as ST_Buffer and ST_Transform , the table caching does not
show significant improvement.

Spatial Range Queries

SedonaDB Performance Benchmark 4

We run spatial range queries on both OSM Nodes and Overture Buildings using query windows of different sizes, and
observed significant speed up compared to running these queries on plain parquet files. 3 range query windows with
different sizes (small, medium, large) are used in the benchmark. The detailed queries can be found in Appendix.

The range queries were benchmarked on uncached Havasu tables as well as cached Havasu tables. To make the
table being fully cached in memory, we allocated 30 GB off-heap memory on each node and cached the tables using
OFF_HEAP storage level when running queries on cached tables.

The benchmarking result of running spatial range queries using these query windows are shown in the following table.
We can see observe that:

1. The performance of spatial range query on Havasu tables is way better than querying the plain parquet files. We
observed 10x performance improvement on medium-sized cluster.

2. Medium-sized clusters is enough to achieve good range query performance. It is not necessary to run a big cluster
to answer highly selective range queries.

3. Caching does not help accelerating spatial range queries, since it prevents the spatial filter push-down optimization
from kicking-in. It is usually better to run spatial range queries on uncached tables.

Medium cluster
Havasu

Medium cluster
Parquet

Large cluster
Havasu

Large cluster
Parquet

Medium cluster
Havasu cached

Large cluster
Havasu cached

OSM Nodes -
small

5.006 s 56.290 s 4.783 s 24.979 s 26.182 s 9.769 s

OSM Nodes -
medium

4.937 s 44.122 s 4.515 s 23.017 s 26.114 s 9.983 s

OSM Nodes -
large

14.067 s 41.679 s 8.639 s 23.074 s 26.399 s 10.262 s

Overture
Buildings - small

5.374 s 20.820 s 3.747 s 10.466 s 6.866 s 3.129 s

Overture
Buildings -
medium

4.900 s 14.942 s 3.926 s 9.578 s 7.972 s 4.612 s

Overture
Buildings - large

6.940 s 15.050 s 4.268 s 9.508 s 6.888 s 3.106 s

Please note that spatial range query performance of Havasu table is largely determined by the distribution of the data.
It works best when the data were properly clustered by spatial proximity. Please refer to the Wherobots documentation
for details.

KNN Query

We run KNN queries with N = 10 using the following locations as query window:

Name WKT Comment

LA POINT (-118.19854981529845 33.96658592049561) LA

NY POINT(-73.98591899205337 40.75149554645705) NY Manhattan

The KNN queries were benchmarked on uncached Havasu tables as well as cached Havasu tables. To make the table
being fully cached in memory, we allocated 30 GB off-heap memory on each node and cached the tables using
OFF_HEAP storage level when running queries on cached tables.

The following table shows the benchmarking results. KNN queries in SedonaDB cannot benefit from spatial filter push
down and needs to scan the entire dataset, so the performance is irrelevant with the query window. We see linear

https://docs.wherobots.services/1.2.0/references/havasu/geometry/cluster-geometry-table/

SedonaDB Performance Benchmark 5

scalability when running these queries. KNN queries are IO-bounded, so caching the tables significantly improves the
performance.

Medium cluster Large cluster Medium cluster cached Large cluster cached

OSM Nodes - LA 78.470 s 36.593 s 42.247 s 17.935 s

OSM Nodes - NY 74.715 s 35.631 s 42.502 s 17.816 s

Overture Buildings - LA 19.424 s 11.295 s 11.187 s 5.319 s

Overture Buildings - NY 19.303 s 10.769 s 11.118 s 5.163 s

Spatial Join

We run 3 spatial joins on both clusters. Two of them joins a large dataset (OSM Nodes, Overture Buildings) with a
medium sized dataset (Postal Codes), and one joining two large datasets. We see linear scalability when running
these queries.

Medium cluster Large cluster Comments

OSM Nodes vs. Postal
Codes

820.431 s 440.613 s

Overture Buildings vs. Postal
Codes

189.744 s 126.981 s

OSM Nodes vs. Overture
Buildings

1088.754 s 524.181 s
Using R-Tree for indexing. The default option Quad-Tree is
painfully slow in this case.

We’ve also noticed that running spatial joins on OSM Nodes vs. Overture Buildings using the default spatial quad-tree
indexing is very slow, so we switched to use R-tree for spatial indexing and observed a huge performance
improvement. According to our experience, R-tree index is usually faster when running polygon vs. polygon spatial
joins, while the default quad-tree index works well when one side of the geometries is point.

Data Update Transactions
Insertion

We run INSERT INTO using various size of dataset on Havasu tables. The inserted dataset were taken from the smaller
(10%) part of the original dataset, so they are completely disjoint with the data in Havasu tables. We can see that both
clusters spent almost the same time for inserting 100K ~ 10M rows. If users have regular data ingestion tasks to insert
less than 10M rows, a medium sized cluster could be enough.

Medium cluster Large cluster

OSM Nodes Large 100K rows 3.212 s 2.507

OSM Nodes Large 1M rows 9.393 s 7.490 s

OSM Nodes Large 10M rows 22.260 s 22.752 s

Overture Buildings Large 100K rows 5.514 s 4.773 s

Overture Buildings Large 1M rows 25.051 s 24.769 s

Overture Buildings Large 10M rows 29.282 s 31.411 s

Merge Into

We run MERGE INTO tasks using various size of dataset on Havasu tables. The datasets used in Merge Into tasks are:

0% updates: all records were taken from the 10% smaller split.

SedonaDB Performance Benchmark 6

5% updates: 95% records were taken from the 10% smaller split, the other 5% were taken from the larger split.
The dataset was shuffled to uniformly distribute the inserted records and updated records.

0% Updates:

Medium cluster Large cluster

OSM Nodes Large 100K rows 14.183 s 9.818 s

OSM Nodes Large 1M rows 17.344 s 12.483 s

OSM Nodes Large 10M rows 139.103 s 152.072 s

Overture Buildings Large 100K rows 13.698 s 11.325 s

Overture Buildings Large 1M rows 75.208 s 31.688 s

OSM Nodes Large 10M rows 85.540 s 34.619 s

5% Updates:

Medium cluster
Medium cluster with 500MB/s
EBS

Large cluster
Large cluster with 500MB/s
EBS

OSM Nodes Large 100K rows 176.457 s 132.806 s 90.812 s 75.126 s

OSM Nodes Large 1M rows 456.985 s 370.200 s 411.686 s 221.397 s

OSM Nodes Large 10M rows 883.080 s 660.144 s 856.020 s 415.859 s

Overture Buildings Large 100K
rows

267.536 s 236.750 s 230.177 s 135.999 s

Overture Buildings Large 1M
rows

356.306 s 286.469 s 276.332 s 167.203 s

Overture Buildings Large 10M
rows

351.929 s 292.439 s 292.787 s 180.121 s

We can see that Merge Into without updates is significantly faster than Merge Into with 5% updates, since it does not
need to rewrite existing data files to perform updates. However it is still slower than Insert Into because it needs to
scan the entire table to find updated records.

The performance of Merge Into with 5% updates on OSM Nodes table is not linearly scalable. This is because we are
hitting the EBS throughput bottleneck (125MB/s). Merge Into involves lots of shuffling, which does lots of disk read and
write, so we don’t see the scalability of performance when switching to larger EC2 instances. However, we can see the
scalability of performance after raising the throughput of EBS to 500 MB/s, since the EBS is not the performance
bottleneck and the task became CPU bounded.

Raster Data Benchmark

Datasets
We are using the USGS Landsat dataset to benchmark the performance of SedonaDB. The Landsat dataset used in
raster data processing benchmark is Landsat Collection 2 Level-2 UTM Surface Temperature (ST) Product. The
GeoTIFF images used in this benchmark are B10 lwir11 band, which is the surface temperature band. The pixel
values indicate the Kelvin temperature of the surface.

The pixel values of B10 band are UInt16 (0 ~ 65535). To obtain surface temperature values, convert the values to
Kelvin using V_kelvin = V_pixel * 0.00341802 + 149.0 (See USGS FAQ). We’ll benchmark this conversion in the map
algebra benchmarks.

https://radiantearth.github.io/stac-browser/#/external/landsatlook.usgs.gov/stac-server/collections/landsat-c2l2-st
https://www.usgs.gov/faqs/how-do-i-use-a-scale-factor-landsat-level-2-science-products

SedonaDB Performance Benchmark 7

We’ve taken different size of subsets to test various functionality of Sedona-DB. For benchmarking in-db raster
operations we take roughly 1TB of Landsat GeoTIFF images; for benchmarking out-db raster operations we take
roughly 10TB of Landsat GeoTIFF images. Please refer to the following table for details of these subsets.

Dataset Size (storage) Number of Records

Landsat Out-DB 11483 GB 166912

Landsat In-DB 1025 GB 14890

Postal Codes 0.86 GB parquet files 154,452

The subsamples of the Landsat dataset used in the benchmarks span the entire globe and covers all the lands except
the arctic.

Data Pre-processing
This task reads the data from requester-payer buckets owned by USGS and write data into Havasu.

In-DB: Reads the entire GeoTIFF image data and write into parquet data files

Out-DB: Only read the metadata of GeoTIFF and write metadata into parquet data files

The data loaded into Havasu were preprocessed to 1024x1024 tiles before writing into Havasu tables, so that the
rasters would fit in the RAM of our cluster for further processing (especially map algebra).

The tables were partitioned by (month, SRID) for supporting efficient spatial-temporal query. The reason why we use
SRID as partitioned column is because the rasters are in UTM coordinate reference system, so the SRID is a natural
spatial partition for this raster dataset.

Medium cluster
Medium cluster with 500MB/s
EBS

Large cluster
Large cluster with 500MB/s
EBS

Loading Landsat In-DB 4185.918 s 1726.541 s 4056.993 s 1568.865 s

Loading Landsat Out-
DB

327.614 s 243.775 199.664 s 166.966 s

We can see that loading out-db rasters is much faster than loading in-db datasets, even though the number of out-db
dataset is 10x larger than the in-db dataset. This is because loading out-db rasters only reads the metadata of
GeoTIFF files and extract the image size, pixel type and geo-referencing information, and don’t need to read the entire
GeoTIFF file from remote storage. Also it is faster to sort the out-db rasters for partitioning than in-db rasters.

We’ve not observed linear scalability when processing in-db rasters. This is caused by EBS volume throughput
(125MB) being hit during the shuffle phases of ingesting data into partitioned tables.

Raster Data Queries
We’ve run several commonly seen raster data processing tasks on both clusters. We can see that the performance
scales linearly for in-db rasters. The reason why the performance does not show linear scalability for out-db rasters
can be caused by the network bandwidth bottleneck of EC2 instance or throttling of S3.

Raster Transformation Queries: In-DB

Medium cluster Large cluster

RS_Metadata 267.831 s 169.888 s

RS_ConvexHull 262.358 s 132.325 s

RS_Count 290.708 s 155.013 s

RS_Value of center point 266.704 s 143.976 s

SedonaDB Performance Benchmark 8

Map Algebra 675.441 s 357.681 s

RS_Resample

ScaleX = 100, ScaleY = -100 374.507 s 187.974 s

RS_Tile (256x256) 331.539 s 198.095 s

Raster Transformation Queries: Out-DB

Medium cluster Large cluster

RS_Metadata 11.122 s 7.112 s

RS_ConvexHull 8.164 s 6.299 s

RS_Count 9678.901 s 7815.650 s

RS_Value of center point 4138.579 s 2139.859 s

Map Algebra 14254.806 s 7279.975 s

RS_Resample

ScaleX = 100, ScaleY = -100 10902.768 s 7805.940 s

RS_Tile (256x256) 36.715 s 26.374 s

There are several notable results for performance of out-db raster processing:

1. Pure metadata operations are very fast, since they only need to scan the Havasu data files to answer these
queries and do not require reading the GeoTIFF files stored in remote storage.

2. RS_Value of center point is linearly scalable. This is because this query only need to read a small portion of
GeoTIFF files, so no network bottleneck was hit.

3. RS_Count , Map Algebra and RS_Resample need to read all the pixel data of the out-db rasters, so the entire
GeoTIFF files were read (10TB in total). They do not show linear scalability possibly because of hitting the EC2
network bottleneck or S3 traffic throttling.

4. RS_Tile is a pure geo-referencing transformation for out-db rasters, so it is very fast to tiling a large out-db raster
into small chips.

Spatial-Temporal Queries

We run spatial range queries on both in-db and out-db datasets using query windows of different sizes. 3 range query
windows with different sizes (small, medium, large) are used in the benchmark. The detailed queries can be found in
Appendix.

We’ve also applied a temporal filter: BEWTEEN TIMESTAMP '2023-08-01' AND TIMESTAMP '2023-09-01' to query the data for
August 2023. Both the temporal filter and the spatial query window can utilize the partitioning of Havasu tables.

Medium cluster Large cluster

Landsat In-DB 6.022 s 4.379 s

Landsat Out-DB 0.866 s 0.743 s

We can see that spatial queries can be answered within seconds for both in-db and out-db rasters. Out-db rasters are
faster to query because each raster record is smaller in the data files and less data need to be scanned to answer the
queries. Spatial query is also a metadata-only operation and don’t need to load GeoTIFF files for out-db rasters.

Join Queries

Join queries requires shuffling the datasets. For in-db datasets, the performance is bounded by EBS throughput, since
the size of the dataset and per-raster size are very large, the shuffle process for joining in-db rasters with geometry

SedonaDB Performance Benchmark 9

involves shuffle writing and shuffle reading 2TB of data. That’s the reason why the performance does not scale linearly.
For out-db rasters, the spatial join queries are CPU-bounded, so raising the throughput of EBS does not help
improving the overall performance.

Medium cluster
Medium cluster with 500MB/s
EBS

Large cluster
Large cluster with 500MB/s
EBS

Landsat In-DB vs. Postal
Codes

2204.226 s 1300.207 s 2195.321 s 1300.230 s

Landsat Out-DB vs. Postal
Codes

124.984 s 115.051 s 79.581 s 84.675 s

Data update Transactions
Insertion

We run INSERT INTO using various size of dataset on Havasu tables. The inserted dataset were taken from the smaller
(10%) part of the original dataset, so they are completely disjoint with the data in Havasu tables. We take 1500 records
as insertion set for in-db rasters, this is roughly the number of images collected by Landsat mission daily.

Medium cluster Large cluster

Landsat In-DB 1500 rows 420.840 s 393.451 s

Landsat Out-DB 1500 rows 27.794 s 8.002 s

Landsat Out-DB 10000 rows 37.979 s 17.295 s

Merge Into

We run MERGE INTO tasks using various size of dataset on Havasu tables. The datasets used in Merge Into tasks are:

0% updates: all records were taken from the 10% smaller split.

5% updates: 95% records were taken from the 10% smaller split, the other 5% were taken from the larger split.
The dataset was shuffled to uniformly distribute the inserted records and updated records.

0% Updates:

Medium cluster Large cluster

Landsat In-DB 1500 rows 801.595 668.782 s

Landsat Out-DB 1500 rows 59.456 s 24.301 s

Landsat Out-DB 10000 rows 112.163 s 88.459 s

5% Updates:

Medium cluster
Medium cluster with 500MB/s
EBS

Large cluster
Large cluster with 500MB/s
EBS

Landsat In-DB 1500 rows 1038.315 s 499.995 s 730.981 s 406.793 s

Landsat Out-DB 1500
rows

58.804 s 52.146 s 25.573 s 24.757 s

Landsat Out-DB 10000
rows

129.194 s 82.568 s 100.846 s 79.127 s

The performance of Merge Into on in-db datasets hits the EBS throughput bottleneck (125 MB/s). Merge Into involves
lots of shuffling, which does lots of disk read and write for in-db rasters. We observed significant performance
improvement when using EBS volumes with higher throughput (500 MB/s).

SedonaDB Performance Benchmark 10

Appendix
1. Spatial range queries used in vector data processing:

Name Selectivity Comment WKT

small 0.5% Los Angeles

POLYGON((-118.58307129967345
34.31439167411405,-118.6132837020172
33.993916507403284,-118.3880639754547
33.708792488814765,-117.64374024498595
33.43188776025067,-117.6135278426422
33.877700857313904,-117.64923340904845
34.19407205090323,-118.14911133873595
34.35748320631873,-118.58307129967345
34.31439167411405))

medium 1.6% California POLYGON((-124.4009 41.9983,-123.6237
42.0024,-123.1526 42.0126,-122.0073
42.0075,-121.2369 41.9962,-119.9982
41.9983,-120.0037 39.0021,-117.9575
37.5555,-116.3699 36.3594,-114.6368
35.0075,-114.6382 34.9659,-114.6286
34.9107,-114.6382 34.8758,-114.5970
34.8454,-114.5682 34.7890,-114.4968
34.7269,-114.4501 34.6648,-114.4597
34.6581,-114.4322 34.5869,-114.3787
34.5235,-114.3869 34.4601,-114.3361
34.4500,-114.3031 34.4375,-114.2674
34.4024,-114.1864 34.3559,-114.1383
34.3049,-114.1315 34.2561,-114.1651
34.2595,-114.2249 34.2044,-114.2221
34.1914,-114.2908 34.1720,-114.3237
34.1368,-114.3622 34.1186,-114.4089
34.1118,-114.4363 34.0856,-114.4336
34.0276,-114.4652 34.0117,-114.5119
33.9582,-114.5366 33.9308,-114.5091
33.9058,-114.5256 33.8613,-114.5215
33.8248,-114.5050 33.7597,-114.4940
33.7083,-114.5284 33.6832,-114.5242
33.6363,-114.5393 33.5895,-114.5242
33.5528,-114.5586 33.5311,-114.5778
33.5070,-114.6245 33.4418,-114.6506
33.4142,-114.7055 33.4039,-114.6973
33.3546,-114.7302 33.3041,-114.7206
33.2858,-114.6808 33.2754,-114.6698
33.2582,-114.6904 33.2467,-114.6794
33.1720,-114.7083 33.0904,-114.6918
33.0858,-114.6629 33.0328,-114.6451
33.0501,-114.6286 33.0305,-114.5888
33.0282,-114.5750 33.0351,-114.5174
33.0328,-114.4913 32.9718,-114.4775
32.9764,-114.4844 32.9372,-114.4679
32.8427,-114.5091 32.8161,-114.5311

SedonaDB Performance Benchmark 11

32.7850,-114.5284 32.7573,-114.5641
32.7503,-114.6162 32.7353,-114.6986
32.7480,-114.7220 32.7191,-115.1944
32.6868,-117.3395 32.5121,-117.4823
32.7838,-117.5977 33.0501,-117.6814
33.2341,-118.0591 33.4578,-118.6290
33.5403,-118.7073 33.7928,-119.3706
33.9582,-120.0050 34.1925,-120.7164
34.2561,-120.9128 34.5360,-120.8427
34.9749,-121.1325 35.2131,-121.3220
35.5255,-121.8013 35.9691,-122.1446
36.2808,-122.1721 36.7268,-122.6871
37.2227,-122.8903 37.7783,-123.2378
37.8965,-123.3202 38.3449,-123.8338
38.7423,-123.9793 38.9946,-124.0329
39.3088,-124.0823 39.7642,-124.5314
40.1663,-124.6509 40.4658,-124.3144
41.0110,-124.3419 41.2386,-124.4545
41.7170,-124.4009 41.9983))

large 20% The US Continent

POLYGON ((-179.99989999978519
16.152429930674884, -179.99989999978519
71.86717445333835, -66.01355466931244
71.86717445333835, -66.01355466931244
16.152429930674884, -179.99989999978519
16.152429930674884))

2. Spatial range queries used in raster data processing.

Name Selectivity Comment WKT

small 0.1% City in China

POLYGON ((117.72773847796182
37.09045838397545, 117.25060575416128
35.36928107311448, 119.24046766589856
34.983667323083765, 119.76218887831448
36.7041948977658, 117.72773847796182
37.09045838397545))

medium 0.8% Japan

POLYGON((128.55792392457062
33.87173430238668,136.95147861207062
38.239427626907464,140.3792129870706
45.43041336933314,153.1672989245706
47.84372363138709,152.2005020495706
45.58440134772845,143.1038223620706
41.08054839577082,141.8733536120706
34.19948676248202,133.65558017457062
32.21414487336577,131.01886142457062
28.923021479173585,127.1956192370706
31.654733407521242,128.55792392457062
33.87173430238668))

large 17% US

POLYGON ((-179.99989999978519
16.152429930674884, -179.99989999978519
71.86717445333835, -66.01355466931244
71.86717445333835, -66.01355466931244
16.152429930674884, -179.99989999978519
16.152429930674884))

